Correction du sujet proposé : Table de mixage

I Étude du préamplificateur

Barème 9

1) On définit l'amplification minimale par : $A_{min} = V_{1min} / E_{1max}$. L'application numérique donne :

1

 $A_{min} = 138 / 77,5 = 1,78$

1

On définit l'amplification maximale par : $A_{max} = V_{1max} / E_{1min.}$ L'application numérique donne :

$$\Lambda_{\text{max}} = 1380 / 2,45 = 563$$

0,5+1

2) Les courants i₁ et i₂ sont les courants d'entrée des amplificateurs opérationnels A1 et A2 considérés comme parfaits: ils sont donc de valeurs négligeables et sont supposés nuls. La tension e₁(t) ne sera donc pas modifiée par la présence de ces amplis.

0,5

Les amplificateurs fonctionnant en régime linéaire, on a V+=V- et Rg a donc pour tension à ses bornes $e_1(t)$.

Soit i(t) le courant traversant R, Rg et R:

$$i(t) = e_1(t) / Rg$$

3).

l

Or d'après la figure 1 : $v(t) = (2R + Rg) i(t) d'où v(t) = (1 + 2R/Rg) e_1(t)$

4) $v_1(t)$ représente la tension de sortie de l'amplificateur A3.

Détermination des tensions e+ et e- :

0,5

$$e^+ = v_A(t)/2$$

0,5

$$e_r = v_1(t)/2 + v_B(t)/2$$

Or A3 fonctionne en régime linéaire donc e+ =e-

D'où: $v_A(t)/2 = v_1(t)/2 + v_B(t)/2$

CODE EPREUVE :		EXAMEN:	SPECIALITE:	
PYELME2		BACCALAURÉAT	Sciences et Technologies Industrielles	
PYELLR2		TECHNOLOGIQUE	spécialité Génie Électronique	
SESSION		EPREUVE : PHYSIQUE APPLIQUÉE		
1999	Corrigé			
Durée : 4h00	Co	efficient : 5	Code sujet : 99FD408	Page : 1/8

Barème $\mathbf{v}_1(\mathbf{t}) = \mathbf{v}_{\mathbf{A}}(\mathbf{t}) - \mathbf{v}_{\mathbf{B}}(\mathbf{t})$ Donc: Or $v(t) = v_A(t) - v_B(t)$ par définition même de la tension v(t) représentée sur la figure 1 d'où : 0,5 $\mathbf{v}(\mathbf{t}) = \mathbf{v}_1(\mathbf{t})$ 5) a) D'après les questions 5 et 6, on en déduit que : 1 $v_1(t) = v(t) = (1 + 2R/Rg)e_1(t)$ 0.5 b) L'amplification du montage $A = V_1 / E_1 = 1 + 2R/Rg$ d'après la question a. c) D'après la question 1, l'amplification A varie entre 1,78 et 563 et R étant fixé, seul Rg peut varier. D'après la question 7 b) : Rg = 2R / (A-1). Application numérique : Pour A = A_{min} = 1,78 on trouve Rg_{max} = 25,6 k Ω Pour A = A_{max} = 563 on trouve Rg _{min} = 36 Ω . 1 Rg doit donc varier entre 36 Ω et 25,6 k Ω . 17,5 II Etude du réglage de tonalité 14 A) Première partie : étude en régime sinusoïdal 1) La sortie de l'amplificateur opérationnel étant rebouclée sur l'entrée inverseuse, il fonctionne en régime linéaire tant qu'il n'y a pas saturation en sortie. 0,5 On reconnaît la structure d'un montage amplificateur non inverseur d'où : $\underline{v}' = (1 + R_b/R_a) \underline{v}_1$ 0,5 0,5 Donc: $\underline{\mathbf{T}}_1 = \mathbf{1} + \mathbf{R}_b / \mathbf{R}_a$ et son module noté T_1 vaut : $\mathbf{T} \mathbf{1} = 6.0$. l 2) R₁ et C₁ étant en parallèle, leurs admittances s'ajoutent, donc : $Y_1 = 1/R_1 + i C_1 \omega$ d'où $Z_1 = 1 / Y_1 = R_1 / (1 + i R_1 C_1 \omega)$ 3) R₂ et C₂ étant en parallèle, leurs admittances s'ajoutent, donc : 0.5 $Y_2 = 1/R_2 + i C_2\omega$ d'où $Z_2 = 1 / Y_2 = R_2 / (1 + \frac{1}{2} R_2 C_2 \omega)$ 4) 0,5 a) La fonction de transfert \underline{T}_2 est définie par $\underline{T}_2 = \underline{V}_1' / \underline{V}_2'$.

En appliquant le diviseur de tension : $\underline{T}_2 = \underline{Z}_2 / (\underline{Z}_2 + \underline{Z}_1)$.

Barème

1

b) En remplaçant \underline{Z}_1 et \underline{Z}_2 respectivement par $1/\underline{Y}_1$ et $1/\underline{Y}_2$, \underline{T}_2 devient :

$$\underline{\mathbf{T}}_{2}=\underline{\mathbf{Y}}_{1}/\left(\underline{\mathbf{Y}}_{1}+\underline{\mathbf{Y}}_{2}\right).$$

Puis en remplaçant \underline{Y}_1 et \underline{Y}_2 par leurs valeurs, \underline{T}_2 devient :

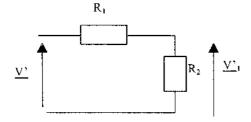
$$\underline{T_2} = \frac{\frac{1}{R_1} + jC_1\omega}{\frac{1}{R_2} + \frac{1}{R_1} + j(C_1 + C_2)\omega}$$

5)

a) T₂ pour ω égal 0 (en continu) s'écrit donc :

0.5

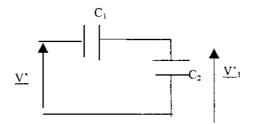
$$\underline{\mathbf{T}}_{2} (\omega = 0) = \mathbf{A}_0.$$


Quand ω tend vers $+\infty$, 1 est négligeable devant ω/ω_1 et ω/ω_2 , \underline{T}_2 se simplifie et devient :

$$\underline{T}_{2}(\omega \to +\infty) = A_{0} \frac{j\frac{\omega}{\omega_{1}}}{j\frac{\omega}{\omega_{2}}} = A_{0} \frac{\omega_{2}}{\omega_{1}}$$

1

b) Les condensateurs en continu se comportent comme des « circuits ouverts », le schéma de la question 4) se simplifie et devient :


0,5

D'où
$$\underline{V}_{1}^{*}/\underline{V}^{*} = R_{2}/(R_{2}+R_{1}) = \underline{T}_{2} (\omega=0) = A_{0}$$

1

c) Quand ω tend vers plus l'infini, l'impédance de C_1 devient faible devant R_1 (de même pour C_2), le schéma devient donc :

0,5

D'où

$$\left|\underline{T}\underline{z}(\omega \to +\infty)\right| = \lim_{n \to +\infty} Tz(\omega \to +\infty) = \frac{1/jCz\omega}{1/jCz\omega} = \frac{1/jCz\omega}{1/jCz\omega}$$

0,5

En remplaçant A_0 , ω_1 et ω_2 par leurs expressions respectives en fonction de R_1 , R_2 , C_1 et C_2 , on obtient :

$$A_0 \frac{\omega_2}{\omega_1} = \frac{R_2}{R_2 + R_1} * \frac{R_1 + R_2}{R_1 R_2 (C_1 + C_2)} * R_1 C_1 = \frac{C_1}{C_1 + C_2}$$

D'où:

$$|T_2(\omega \to +\infty)| = T_2(\omega \to +\infty) = \frac{C_1}{C_1 + C_2} = \frac{1}{6}$$

0,5

- 6) Étude de la fonction de transfert :
- a) La résistance de sortie de l'amplificateur opérationnel A4 étant considérée comme nulle, la tension v'(t) n'est pas modifiée par la charge constituée des impédances Z₁ et Z₂.
 On peut donc écrire que :

1 (0,5 pour l'explication

$$\underline{\underline{T}} = \frac{\underline{\underline{V'_1}}}{\underline{V_1}} = \frac{\underline{\underline{V'_1}}}{\underline{V'}} * \frac{\underline{\underline{V'}}}{\underline{V_1}} = \underline{\underline{T}}_1 \underline{\underline{T}}_2$$

b) Le module de \underline{T} est égal au produit des modules : $T = T_1 T_2 = 6 T_2$

0,5

c) D'après la question 5c):

$$T_2(\omega \to +\infty) = \frac{1}{6}$$

La limite de T_2 quand ω tend vers + ∞ est indépendante de la valeur de R_2 . Donc la limite de T quand ω tend vers + ∞ est aussi indépendante de R_2

$$T_{(\omega \to +\infty)} = 6 T_2(\omega \to +\infty) = 1$$

1

7) a) Pour $R_2 = 2 \text{ k}\Omega$, le gain est nul pour toutes les fréquences f inférieures à 10 kHz: cela signifie que la tension de sortie $v'_1(t)$ est égale à la tension d'entrée $v_1(t)$; les sons graves ne sont donc pas modifiés.			
b) Pour $R_2 > 2 \ k\Omega$, G est strictement positif; Cela signifie que T est strictement supérieur à 1 ou que l'amplitude de $v_1(t)$ est supérieure à l'amplitude de $v_1(t)$: les sons graves sont donc amplifiés.			
B) Deuxième partie : étude en régime périodique	; !		
 D'après le graphe 1 page 10, v'1(t) est une tension périodique de période T' environ égale à : T' = 2,85 x 5 10⁻³ s = 14,25 ms ou de fréquence F = 1/T' = 70 Hz. v'1(t) admet donc un fondamental de fréquence F égale à 70 Hz. 	2		
Les fréquences de ses harmoniques sont les multiples de F : 2F, 3F, 4F			
 La tension v''i(t) est une tension sinusoïdale de fréquence F égale à 70 Hz. Cette note appartient à la bande (20 Hz, 80 Hz) qui correspond aux sons graves. 			
III Etude de la détection de niveau et de l'alarme			
A)Etude du comparateur			
1) D'après la figure 3, les courants d'entrée de l'amplificateur opérationnel A5 étant nuls, on détermine Vref par la relation suivante :			
$V_{ref} = V_{dd} \cdot R_d / (R_d + R_c) = 15 \times (10/32) = 4,69 \text{ V}$			
 a) L'amplificateur A5 fonctionne en montage comparateur à un seuil car il n'y a pas de rebouclage de la sortie sur l'entrée. 			
Si $v'_1(t) > V$ ref alors $v'_c(t) = +15 V$ et $v_c(t) = +15 V$ car la diode D est bloquée. Si $v'_1(t) < V$ ref alors $v'_c(t) = -15 V$ et $v_c(t) = 0 V$ car la diode D est passante et considérée comme idéale.			
3) voir document page 11.			
B)Etude du monostable			
 D'après la figure 4, la sortie du monostable change d'état pour chaque front montant de v_c(t). Le monostable se déclenche donc sur front montant. 	0,5		
2) La durée de temporisation est de 0,5 s. v _d (t) vaut alors +15V.			
3) a) Si $V_d(t) = +15$ V, la D.E.L. est passante donc allumée. Si $V_d(t) = 0$ V, la D.E.L. est bloquée donc éteinte.			
b) D'après la figure 4 :			
$V_{d}(t) = V_{dd} = R_p i(t) + U_{del}$ où U_{del} représente la tension de seuil de la D.E.L	ç		

i(t) ne doit pas dépasser 20 mA d'où : Rp = (V_{dd} - U_{del})/ 0,02 = 670 $\Omega_{\rm c}$

Barème

4) voir document page 11.

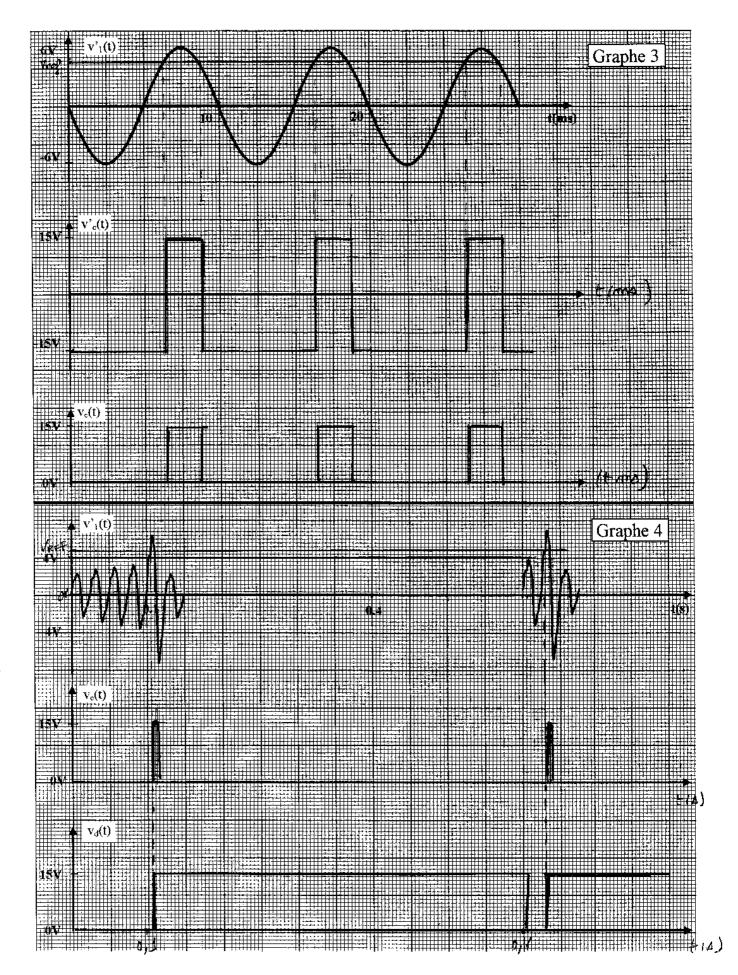
Courbe 1 + 1

IV Etude du mélangeur

3

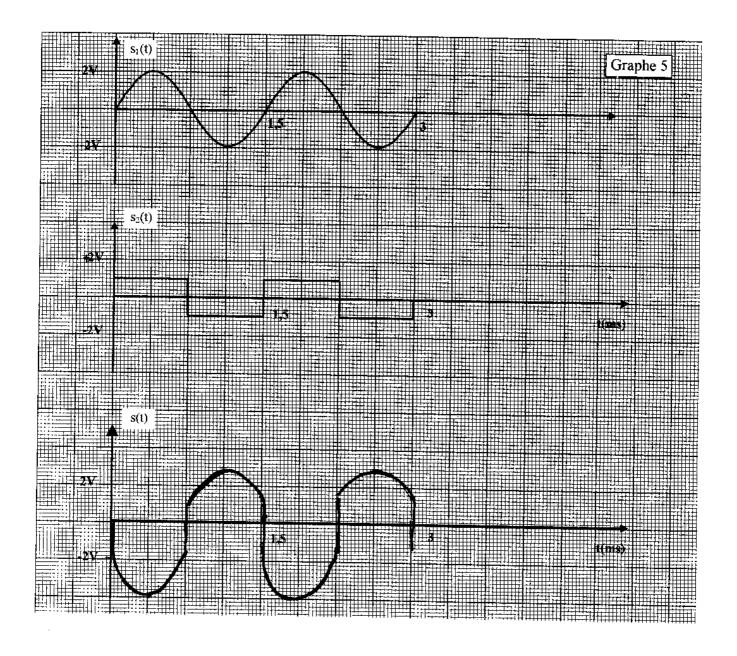
1) A6 fonctionne en régime linéaire : v+= v-

1 + 0.5


$$i = s_1(t) / R + s_2(t) / R$$

or
$$s(t) = -Ri(t)$$

D'où:


1,5

$$s(t) = -s1(t) -s2(t)$$

2) voir graphe.

Document Réponse

